
Solution Sheet 5

Exercise 5.1

Let T be a linear operator on a separable Hilbert Space H such that for some orthonormal basis
(ei) of H,

∞∑
i=1

⟨Tei, ei⟩ < ∞.

Is T necessarily compact?

Proof. No; define T to be the shift operator, Tei := Tei+1. Then

∞∑
i=1

⟨Tei, ei⟩ =
∞∑
i=1

⟨ei+1, ei⟩ = 0.

However, T is not compact: the sequence (ei) is bounded in H, though (Tei) = (ei+1) has no
convergent subsequence.

Exercise 5.2

1. Suppose that Y is normally distributed with mean zero and variance one. Is the process X
defined by Xt =

√
tZ a Brownian Motion?

2. Let B,W denote two independent standard real-valued Brownian Motions. For λ ∈ [0, 1]
define the process Z by

Zt = λBt +
√

1− λ2Wt.

Is Z a Brownian Motion?

Proof. hhi

1. No; for s < t, Xt −Xs = (
√
t−

√
s)Y ∼ N

(
0, (

√
t−

√
s)2

)
̸= N (0, t− s).

2. Yes; Z is continuous and starting from zero as the sum of two such processes. For indepen-
dence of increments, we use that increments of B are independent from one another and that
as B is independent of W then all increments of B are further independent from all incre-
ments of W , hence all finite linear combinations preserve independence. For the distribution
of increments of Z, we observe that

Zt − Zs = λ(Bt −Bs) +
√

1− λ2(Wt −Ws)

which is the sum of independent normally distributed random variables, N(0, λ2(t− s)) and
N(0, (1− λ2)(t− s)) respectively, hence the sum has distribution N(0, t− s).

Exercise 5.3

For any fixed T > 0, and for W a standard real-valued Brownian Motion, define the process B
on [0, T ] by

Bt = Wt −
t

T
WT .
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1. Prove that B is a Gaussian process on [0, T ].

2. Calculate the covariance of B.

3. Show that B is independent of the process W̃ defined by W̃t = W̃t+T .

4. Demonstrate that the process B̃ defined on [0, T ) by

B̃t =
T − t√

T
W t

T−t

has the same law as B.

5. Let (FB
t ) denote the completed filtration generated by B. Verify that for 0 ≤ s < t ≤ T ,

E(Bt|FB
s ) =

T − t

T − s
Bs.

6. Define the process V on [0, T ) by

Vt =

∫ t

0

Br

T − r
dr.

Confirm that the process X on [0, T ) defined by

Xt = Bt + Vt

is a standard Brownian Motion for (FB
t ).

Proof. hi

1. For any finite collection of times 0 ≤ t1 < · · · < tn ≤ T , the vector (Bt1 , . . . , Btn) can be
obtained from finite linear combinations of vectors from the Gaussian process W .

2. Via direct computation,

E(BsBt) = E

[(
Ws −

s

T
WT

)(
Wt −

t

T
WT

)]
= E(WsWt)−

t

T
E(WsWT )−

s

T
E(WTWt) +

st

T 2
E(W 2

T )

= (s ∧ t)− t

T
s− s

T
t+

st

T 2
T

= (s ∧ t)− st

T
.

3. As argued in the first part, B and W are jointly Gaussian. Therefore it is sufficient to show
that they have null covariance:

E(BsW̃t) = E(WsWt+T )−
s

T
E(WTWt+T ) = s− s

T
T = 0.

2



4. B̃ is a centred Gaussian process, inherited fromW , so its law is characterised by the covariance

E(B̃sB̃t) = E

[
T − s√

T
W s

T−s

T − t√
T

W t
T−t

]
=

(T − t)(T − s)

T

[(
s

T − s

)
∧
(

t

T − t

)]
=

(T − t)(T − s)

T

(s ∧ t)

T − (s ∧ t)
.

For the sake of clarity let us assume that (s ∧ t) = s. Then the above is

(T − t)(T − s)

T

s

T − s
=

(T − t)s

T
= s− st

T

which matches the covariance of B shown in part 2, as required.

5. We look to show that

E

(
Bt −

T − t

T − s
Bs

∣∣∣FB
s

)
= 0. (1)

Observe that

Bt −
T − t

T − s
Bs = Wt −

t

T
WT − T − t

T − s

[
Ws −

s

T
WT

]
= Wt −

T − t

T − s
Ws +

s− t

T − s
WT . (2)

Let (FW
t ) denote the completed filtration of W . From the definition of B clearly FB

s ⊂
FW
s ∨ σ(WT ), so we use the tower property of conditional expectation to see that

E

(
Bt −

T − t

T − s
Bs

∣∣∣FB
s

)
= E

[
E

(
Bt −

T − t

T − s
Bs

∣∣∣FW
s ∨ σ(WT )

) ∣∣∣FB
s

]
.

From the independence shown in part 3, Bt − T−t
T−sBs is independent of σ(WT ) hence

E

(
Bt −

T − t

T − s
Bs

∣∣∣FW
s ∨ σ(WT )

)
= E

(
Bt −

T − t

T − s
Bs

∣∣∣FW
s

)
.

Using the representation (2),

E

(
Bt −

T − t

T − s
Bs

∣∣∣FW
s

)
= E

(
Wt −

T − t

T − s
Ws +

s− t

T − s
WT

∣∣∣FW
s

)
= Ws −

T − t

T − s
Ws +

s− t

T − s
Ws

= 0

confirming (1).

6. Note that V is well defined as the integrand is bounded by pathwise continuity of B. We
look to use Lévy’s Characterisation of Brownian Motion; firstly then we must show that X
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is a martingale. Indeed for 0 ≤ s < t < T , by Fubini’s Theorem and the previous part,

E
(
Vt − Vs|FB

s

)
= E

(∫ t

s

Br

T − r
dr
∣∣∣FB

s

)
=

∫ t

s

E
(
Br|FB

s

)
T − r

dr

=

∫ t

s

1

T − r

T − r

T − s
Bsdr

=

∫ t

s

Bs

T − s
dr

=
t− s

T − s
Bs.

Using the previous part once more,

E
(
Bs −Bt|FB

s

)
=

(
1− T − t

T − s

)
Bs =

t− s

T − s
Bs = E

(
Vt − Vs|FB

s

)
therefore E(Xt −Xs|FB

s ) = 0 so X is an (FB
t ) martingale. It only remains to show that the

quadratic variation [X]t = t, for which we note that V is of finite variation hence [X]t = [B]t,
but of course

(
t
T WT

)
is also of finite variation so [B]t = [W ]t = t as required.

Exercise 5.4

Verify that each λk, ek defined by

λk =

((
k − 1

2

)
π

)−2

, ek(t) =
√
2sin

((
k − 1

2

)
πt

)
are respective eigenvalues and eigenfunctions of the covariance operator for Brownian Motion on
[0, 1].

Proof. We need to verify that ∫ 1

0
(s ∧ t)ek(t)dt = λkek(s)

which we rewrite as ∫ s

0
tek(t)dt =

∫ 1

s
ek(t)dt = λkek(s)

from which we directly plug in the values of λk and ek to yield the result.

Exercise 5.5

Compute

E

(
e−

1
2

∫ 1
0 W 2

t dt
)
.
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Proof. We use the expansion of W specified in Proposition 2.6.11, for (λk, ek) as in Exercise 5.4,
that is

Wt =
∞∑
k=1

√
λkβkek(t)

where (βk) are i.i.d standard Gaussian random variables. Then∫ 1

0
W 2

t dt =

∫ 1

0

∞∑
k=1

∞∑
j=1

√
λkλlβkβlek(t)el(t)dt

=

∞∑
k=1

∫ 1

0
λkβ

2
ke

2
k(t)dt

=

∞∑
k=1

λkβ
2
k

using that the (ek) form an orthonormal basis of L2 ([0, 1];R). Therefore

E

(
e−

1
2

∫ 1
0 W 2

t dt
)
= E

(
Π∞

k=1e
− 1

2
λkβ

2
k

)
= Π∞

k=1E

(
e−

1
2
λkβ

2
k

)
using that the (βk) are independent. As they are standard normal, then

E

(
e−

1
2
λkβ

2
k

)
=

∫
R

1√
2π

e−
x2

2 · e−
1
2
λkx

2
dx =

√
1

1 + λk

hence

E

(
e−

1
2

∫ 1
0 W 2

t dt
)
= Π∞

k=1

√
1

1 + λk
.

One can simplify this further with the explicit form of λk to
√

1
cosh(1) .
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