Solution Sheet 5
Exercise 5.1

Let T be a linear operator on a separable Hilbert Space H such that for some orthonormal basis

(e;) of H,

oo

Z<T€i7 ei) < 0.

i=1
Is T necessarily compact?

Proof. Noj; define T to be the shift operator, Te; := Te;11. Then

o) o)
Z(Tei, €i> = Z<ei+1, €i> =0.
i=1 =1

However, T' is not compact: the sequence (e;) is bounded in H, though (Te;) = (e;+1) has no
convergent subsequence. O

Exercise 5.2

1. Suppose that Y is normally distributed with mean zero and variance one. Is the process X
defined by X; = v/tZ a Brownian Motion?

2. Let B,W denote two independent standard real-valued Brownian Motions. For A € [0, 1]

define the process Z by
Zy = ABy + V1 — N2 W,

Is Z a Brownian Motion?
Proof.
1. No; for s < t, Xy — Xs = (VE— /s)Y ~ N (0,(vt — /5)?) # N (0,t — s).

2. Yes; Z is continuous and starting from zero as the sum of two such processes. For indepen-
dence of increments, we use that increments of B are independent from one another and that
as B is independent of W then all increments of B are further independent from all incre-
ments of W, hence all finite linear combinations preserve independence. For the distribution
of increments of Z, we observe that

Zy — Zs = N(By — By) 1= N2(W, — Ws)

which is the sum of independent normally distributed random variables, N (0, A\?(t — s)) and
N(0, (1 — A?)(t — s)) respectively, hence the sum has distribution N(0,¢ — s).

O]

Exercise 5.3

For any fixed T' > 0, and for W a standard real-valued Brownian Motion, define the process B
on [0,T] by

t
Bt = Wt - fWT

1



1. Prove that B is a Gaussian process on [0,7].

2. Calculate the covariance of B.

3. Show that B is independent of the process W defined by W; = WHT.
4. Demonstrate that the process B defined on [0,T) by

~ T—t
has the same law as B.
5. Let (FP) denote the completed filtration generated by B. Verify that for 0 < s <t < T,

Tt

B(BIF) = 7

B;.

6. Define the process V on [0,T') by

' B
Vi = /0 T _T rdr.
Confirm that the process X on [0,7") defined by
Xy =B +V;
is a standard Brownian Motion for (F7).
Proof.

1. For any finite collection of times 0 < t; < --- < t,, < T, the vector (By,,...,By,) can be
obtained from finite linear combinations of vectors from the Gaussian process W.

2. Via direct computation,

E(BsB,) = E [(W - ZWr) (Wt = ;_,WT)]

t S st
= B(W,Wy) — ZE(WWr) — ZBWrW,) + 5 B(W7)
S st
st

3. As argued in the first part, B and W are jointly Gaussian. Therefore it is sufficient to show
that they have null covariance:

~ S S
E(BJW,) = E(WiWiir) — ZBWrWear) = s — =T = 0.



4. Bis a centred Gaussian process, inherited from W, so its law is characterised by the covariance

- - T —s T—t
E(BSBt):E[ s WTS_S s WTtt:|

NI [(TS_S> : (Tt—t”

_ (T —t)(T—s) (sAt)
T T—(sAt)

For the sake of clarity let us assume that (s A t) = s. Then the above is

(T—-t)(T-s) s  (T—t)s st
T T—s T T

which matches the covariance of B shown in part 2, as required.
T-—t

T —t¢ t T —t s T —t s—t
L S R
i B = Wi W = e [We = W | = W = e W 4

5. We look to show that

Observe that

Wr.  (2)

Let (F}V) denote the completed filtration of W. From the definition of B clearly F? C
F!V V o(Wr), so we use the tower property of conditional expectation to see that

T ¢ T ¢
E(Bt—TSBS ! ) :E[E (Bt—TSBS )> ‘ff]

From the independence shown in part 3, By — T—B is independent of o(W7) hence

*)

Tt
8>:E<Wt— W, 4+ 5= WT‘}'W>

T
]E<Bt—TB \/O‘WT> <Bt—B

Using the representation (2),

E <Bt— %BS
— S

T —s T —s
T—1t s—t
_WS_T—5W5+T—SWS

=0
confirming (1).

6. Note that V is well defined as the integrand is bounded by pathwise continuity of B. We
look to use Lévy’s Characterisation of Brownian Motion; firstly then we must show that X



is a martingale. Indeed for 0 < s <t < T, by Fubini’s Theorem and the previous part,

t Br
E(V; - Vi FB) = E </ = dr‘ff)
S

—-Tr

- /t = (BT|FSi) dr

T —r
t 1 T-
:/ " Budr

Using the previous part once more,

Tt t—s
E (Bs — B FP) = <1—T_S>Bs:T_SBSZE(%—VSIFSB)

therefore E(X; — X4|FP) =0 so X is an () martingale. It only remains to show that the
quadratic variation [X]; = ¢, for which we note that V' is of finite variation hence [X]; = [B],
but of course (4Wr) is also of finite variation so [B]; = [W]; =t as required.

O

Exercise 5.4

Verify that each Ak, e defined by

(e D R (Y

are respective eigenvalues and eigenfunctions of the covariance operator for Brownian Motion on

[0, 1].
Proof. We need to verify that
1
/ (5 A t)ex(t)dt = Apen(s)
0

which we rewrite as

s 1
/0 tek(t)dt :/5 ek(t)dt = )\kek(s)

from which we directly plug in the values of A\; and ey to yield the result.

Exercise 5.5

Compute
E <€_% fol ngt) .



Proof. We use the expansion of W specified in Proposition 2.6.11, for (A, er) as in Exercise 5.4,
that is

Wi ="V wBrex(t)
k=1

where (0j) are i.i.d standard Gaussian random variables. Then

1 1 ©© o0
/ Widt = / > VAN BeBrer(t)e(t)dt
0 0 b=t ot

eS|

=3 [ sk
k=1"0

=> MBi
k=1

using that the (eg) form an orthonormal basis of L? ([0, 1];R). Therefore
B (e i) = (T2 e300 ) = T2 B (e 2200%)
using that the (fj) are independent. As they are standard normal, then

1y 32 1 «2 1y .2 1
E (€_§>\kﬁk> e / 6_7 . €_§>\k$ d_jU =
RV 2w 1+ /\k

hence

1rl 2
B (bl Wid) — e .
¢’ k=1 14+ Mg

One can simplify this further with the explicit form of A; to m



